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Requirements to the modern transport system
8

 Transport – key element of modern economics

Ecological 
requirements

EffectivenessSafety



Sustainable development
9

 Sustainable development is a development that meets the needs of 
the present without compromising the ability of future generations to 
meet their own needs

 Transport sustainable development tools:
 use of ITS (Intelligent Transportation Systems)

 use of  P&R (Park and Ride)

 optimization of existing transport infrastructure

 development of intermodality

 implementation of new transport infrastructure elements on
the base of doing strict impact analysis

 use of sound tax policy

 etc



Traffic analysis tools
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A traffic analysis tools is a collective term used to describe a variety of 

software-based analytical procedures and methodologies that support 

different aspects of traffic and transportation analyses

Traffic analysis tools:

• Sketch –planning tools

• Travel demand models

• Analytical deterministic tools (HCM, ICU…) 

• Traffic signal optimization tools

• Macroscopic simulation models

• Mesoscopic simulation models

• Microscopic simulation models



Macro- , Mezo- , Micro-
11



Mesoscopic models
12

 Mesoscopic models combine the properties of both microscopic and 
macroscopic simulation models. These models simulate individual vehicles, but 
describe their activities and interactions based on aggregate (macroscopic) 
relationships 1

 Mesoscopic models of traffic flow are based on estimation macroscopic 
indices on microscopic level 2

 Mesoscopic models combine the properties of both microscopic 
and macroscopic simulation models. These models simulate 
individual vehicles or group of vehicles, but describe their 
activities and interactions based on aggregate (macroscopic) 
relationships

1) http://www.dot.ca.gov

2) Gilkerson G. et al. 2005. Traffic Simulation



Some mesoscopic models

 СONTRAM (Leonard, D.R. et al. 1989)

 Cellular Automata (Nagel K. and Schreckenberg M. , 1992)

 DYNASMART (Jayakrishnan, R. et al. 1994)

 DYNAMIT (Ben-Akiva, M. 1996)

 FASTLANE (Gawron, C. 1998)

 DTASQ (Mahut, M. 2001)

 MEZZO (Burghout, W. 2004)

 AMS (Y. C. Chiu, L. Zhou, and H. Song, 2010)
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Common disadvantages:

• Realised in proprietary software

• Defined only theoretically
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Fundamentals of 

discrete rate approach



Traditional simulation approaches
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Discrete Rate



Level of detail VS simulation efforts
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General comparison of approaches
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Flow process models
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Characteristics of the mesoscopic 

discrete rate approach
19

Discrete Rate

Event planning for continuous processes



Hybrid characteristics of a mesoscopic discrete rate 

approach
20



Concepts of discrete rate approach

 Formally mesoscopic models can be represented as funnel 

funnel

( )  arrival rate (cust/h)

( )  process rate (cust/h)

( )  interarrival rate(cust/h)

  funnel volume
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M. Schenk, Y. Tolujew, and T. Reggelin, "A Mesoscopic Approach to the Simulation of Logistics Systems," Advanced 
Manufactoring and Suistainable Logistics Lecture Notes in Business Information Processing, vol. 46, no. 1, pp. 15-25, 2010.



M O D E L  F O R  U N C O N G E S T E D  N E T W O R K

M O D E L F O R  C O N G E S T E D  N E T W O R K
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Formulation of DRTRM 

(discrete rate traffic reference model)



Example of transport node
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input flows

output flows

turning  flows



Transport network in DRTRM notation
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2

2

2



Mathematical Representation (1/4)
25

• 𝜆𝑖   – input intensity of the flow from direction i=1..5 (used units: PCU per time unit); 

• 𝛽𝑖- output flow value from direction i=1..5 (used units: PCU per time unit); 

• 𝜆𝑖
𝑙 , 𝜆𝑖

𝑠 , 𝜆𝑖
𝑟  - intensity of the flow for the turns (l-left; s-straight; r-right) from direction 

i=1..5 (used units: PCU per time unit); 

• 𝑏𝑖
𝑙 , 𝑏𝑖

𝑠 , 𝑏𝑖
𝑟 - queue length for the turns (l-left; s-straight; r-right) from direction i=1..5 

(used units: PCU); 

• µ𝑖
𝑙 , µ𝑖

𝑠 , µ𝑖
𝑟 -the processing rate for the turns (l-left; s-straight; r-right) from direction 

i=1..5 (used units: PCU per time unit); 

• 𝛽𝑖
𝑙 , 𝛽𝑖

𝑠 , 𝛽𝑖
𝑟  – output flow rate for the turns (l-left; s-straight; r-right) from direction 

i=1..5 (used units: PCU per time unit); 

• 𝛽𝑖  – total output flow to direction i=1..5 (used units: PCU per time unit); 

• 𝐵5
𝑐𝑎𝑝

- the maximum value of queue length for direction 4 (used units: PCU); 



Mathematical representation (2/4)
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The following equations could be written: 

 

 
 
 

 
 𝜆𝑖

𝑟 𝑡 = 𝜆𝑖 𝑡 𝑝𝑖
𝑟

𝜆𝑖
𝑠 𝑡 = 𝜆𝑖 𝑡 𝑝𝑖
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𝑙
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𝑠 + 𝑝𝑖
𝑙 = 1

 (5.1) 

 where: 

• 𝑝𝑖
𝑟 , 𝑝𝑖

𝑠 , 𝑝𝑖
𝑙  – a probability of turns (l-left; s-straight; r-right) from direction i=1..5; 

• 𝑡 – current time. 
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𝑙 𝑡 

 (5.2) 

 



Mathematical representation (3/4)
27

 𝛽𝑖∈(1,2,4,5)
𝑠  𝑡 =  

0,  𝜆𝑖
𝑠 𝑡 = 0 𝑎𝑛𝑑 𝑏𝑖

𝑠 𝑡 = 0

 𝜆𝑖
𝑠 𝑡 ,𝜆𝑖

𝑠 𝑡 > 0 𝑎𝑛𝑑  𝜆𝑖
𝑠 𝑡 ≤ 𝜇𝑖

𝑠  𝑎𝑛𝑑 𝑏𝑖
𝑠 𝑡 = 0

𝜇𝑖
𝑠 , 𝑏𝑖

𝑠 𝑡 > 0

 (5.4) 

 

 𝛽𝑖∈(2,3,4,5)
𝑟  𝑡 =  

0,  𝜆𝑖
𝑟 𝑡 = 0 𝑎𝑛𝑑 𝑏𝑖

𝑟 𝑡 = 0

 𝜆𝑖
𝑟 𝑡 ,𝜆𝑖

𝑟 𝑡 > 0 𝑎𝑛𝑑  𝜆𝑖
𝑟 𝑡 ≤ 𝜇𝑖

𝑟  𝑎𝑛𝑑 𝑏𝑖
𝑟 𝑡 = 0

𝜇𝑖
𝑟 , 𝑏𝑖

𝑟 𝑡 > 0

 (5.5) 

 



Mathematical Representation (4/4)
28



Model for congested network
29

 𝑟 𝑡 = 𝑑 − 𝑏2 𝑡  (5.10) 
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Compare micro-, meso-, macromodels parameters and 

characteristics  
30

Microscopic models Macroscopic models

Traffic flow

• Intensity of  the flows

• Different types of vehicles with 

different characteristics

• Interaction between vehicles

• Queuing is possible

• Influence on speed from other 

vehicles

Infrastructure

• Real sizes of the road (including 

lane number)

• Geometry of the road

• Topology of the crossroads

• Traffic lights data

• Priority rules

Traffic flow

• Volume of traffic

• Homogeneous flow

• No interaction between flows

• Queues are not taken into account

• Influence on speed in form of VDF

Infrastructure

• Link-node notation

• Length of the links

• Traffic lights are not taken into 

account

• No priority rules

Traffic flow

• Volume of traffic

• Homogeneous flow

• Interaction between flows

• Queuing is possible

• Influence on speed in form of VDF

Infrastructure

• Link-node notation

• Length of the links

• Traffic lights data

• Priority rules

Mesoscopic models



Case-study: simulation of the two 

connected crossroads
31



Simulation object
32
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Structure of mesoscopic model
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Microscopic model

 PTV VISION VISSIM 

 Number of links and connectors – 66

 Number of vehicle inputs – 18

 Number of routes – 24

 Number of conflict areas – 8

 Number of traffic lights – 24

 Data collection points – 24

34



Validation of mesoscopic model

 Qualitative

 Animation

 Queue dynamics comparison

 Box-Whisker plots

35

Main hypothesis:

no significant difference between output from microscopic and 

mesoscopic models

 Quantitative

 Test for homogeneity

 Student t-test

 Mann-Whitney u-test

 Confidence interval test

 Naive test

 Novel test



Validation results (animation)
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Validation results (queue dynamics comparison)
37



Validation results (Box-Whisker plots)
38



Validation results

Data set

Qualitative 

validation

(animation)

Test for 

homogeneity

Confidence 

interval test
Naive test Novel test

Queue 1 Valid Valid Valid Valid Valid

Queue 2 Valid Valid Valid Valid Not valid

Queue 3 Valid Valid Valid Valid Valid

Queue 4 Valid Valid Valid Not valid Not valid

Queue 5 Valid Valid Valid Valid Valid

Queue 6 Valid Valid Valid Valid Not valid

Queue 7 Valid Valid Valid Not valid Not valid

Queue 8 Valid Valid Valid Valid Not valid

39



TA S K S  I N  F R A M E  O F  A P P R O B AT I O N  O N  R E A L  D ATA :

1 ) D E T E R M I N E  I N P U T  D ATA  F O R  M E S O S C O P I C  M O D E L

2 ) M O D E L  D E V E L O P M E N T

3 ) E S T I M AT I O N  O F  L O S

4 ) C O M PA R E  O U T P U T  R E S U LT S  W I T H  M I C R O S C O P I C  S I M U L AT I O N

40

Case-study: Urban transport corridor 

mesoscopic simulation



Simulation Object
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Input Data: Traffic light data and 

volume of traffic
42



Input Data: Passing function estimation

 More than 7 hours of video from two crossroads

 More than 400 observations

43

Exemplary chart
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ExtendSim simulation software
47

https://www.extendsim.com



ExtendSim Discrete Rate library application
48



Model constructed in ExtendSim
49

General model

Internal structure

of node



Output results
50

 

Crossroad 

Number 

Microscopic model 
Mesoscopic 

model 

LOS 
Average 

delay time (s) 
LOS 

Average 

delay time (s) 

1 B 14.5 B 18.6 

2 B 13.8 B 17.5 

3 A 1.6 A 1.2 

4 B 17.3 B 17.6 

5 B 18.1 C 21.6 

6 B 11.2 B 14.3 

7 C 20.6 C 30.8 

8 C 31.2 D 45.5 

9 A 2.1 A 1.2 

10 D 41.5 E 55.6 

 

*

*

*



Mesoscopic vs Microscopic

(time resource)
51
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