# TRAFFIC FLOW SIMULATION USING MESOSCOPIC APPROACH

#### DR.SC.ING. MIHAILS SAVRASOVS

#### TRANSPORT AND TELECOMMUNICATION INSTITUTE RIGA, LATVIA









# Key data

## • Number of students: > 2900

# • Faculties:

- <u>Computer Science and Telecommunication</u>
- Management and Economics
- Transport and Logistics

## • Levels:

- Bachelor/Professional qualification
- o Master
- o PhD
- Staff: >160 teaching staff

| Key research directions                             |                                                                                                                                                                                                                                                         |  |  |  |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                     |                                                                                                                                                                                                                                                         |  |  |  |  |
| ICT<br>(Telematics)                                 | <ul> <li>Smart Cyber-Physical Systems</li> <li>Internet of Things and Platforms for Connected<br/>Smart Objects</li> <li>Robotics</li> <li>Cyber Security</li> <li>Big Data and Data Mining</li> <li>Virtual Reality Applications</li> </ul>            |  |  |  |  |
| Smart<br>Solutions in<br>Transport and<br>Logistics | <ul> <li>Aviation</li> <li>Intelligent transport systems</li> <li>Transport Simulation and Modelling</li> <li>Smart Logistics</li> <li>Applications of Ground Penetrating Radar</li> </ul>                                                              |  |  |  |  |
| Digital Society<br>and Economy                      | <ul> <li>Smart City and Urban Mobility</li> <li>Content technologies and information<br/>management</li> <li>E-Education</li> <li>Information Technologies for Enterprises</li> <li>Human-centric Digital Age</li> <li>Business Intelligence</li> </ul> |  |  |  |  |



Enhancing excellence and innovation capacity Substance in sustainable transport interchanges

#### Scope

- Link Transport and Telecommunication Institute (TTI) with University of Thessaly (UTH) and Fraunhofer Institute for Factory Operation and Automation (Fraunhofer)
- Provide knowledge to TTI research staff in the field of smart interconnecting sustainable transport networks.
- Facilitate stakeholder collaboration and develop strong linkage among education, research and industry
- Create a doctoral programme in Transport Economics and Management at TTI

#### Concept

- > Needs' analysis of Latvia and the surrounding region of the Baltic sea (Lithuania, Estonia, Poland) on intermodal transportation terminals
- Consideration of the relations among policy makers, industry and education/research
- > Development of a coherent educational/training program, structured around 3 pillars:
- Organizational/governance ~
- Operational/services 1
- Service quality/customer satisfaction ~



#### Program's thematic areas



TRANSPORTA UN SAKARU TSI INSTITUTS









This project has received funding from the Surageer Union's Horizon 2020 research and Innovation programme under grant agreement No 692426

#### www.alliance-project.eu



# Introduction

 Fundamentals of mesoscopic discrete rate approach

- Formulation of discrete rate traffic reference model
- Case-study: simulation of the two connected crossroads
- Case-study: Urban transport corridor mesoscopic simulation



# Sustainable development

 Sustainable development is a development that meets the needs of the present without compromising the ability of future generations to meet their own needs

#### Transport sustainable development tools:

- o use of ITS (Intelligent Transportation Systems)
- use of P&R (Park and Ride)
- optimization of existing transport infrastructure
- development of intermodality
- implementation of new transport infrastructure elements on the base of doing strict impact analysis
- o use of sound tax policy
- o etc

# Traffic analysis tools

10

A traffic analysis tools is a collective term used to describe a variety of software-based analytical procedures and methodologies that support different aspects of traffic and transportation analyses

#### Traffic analysis tools:

- Sketch –planning tools
- Travel demand models
- Analytical deterministic tools (HCM, ICU...)
- Traffic signal optimization tools
- Macroscopic simulation models
- Mesoscopic simulation models
- Microscopic simulation models



# Mesoscopic models

- Mesoscopic models combine the properties of both microscopic and macroscopic simulation models. These <u>models simulate individual vehicles</u>, but describe their <u>activities and interactions based on aggregate (macroscopic)</u> relationships <sup>1</sup>
- Mesoscopic models of traffic flow are based on estimation <u>macroscopic</u> indices on <u>microscopic level</u><sup>2</sup>
- Mesoscopic models combine the properties of both microscopic and macroscopic simulation models. These models simulate individual vehicles or group of vehicles, but describe their activities and interactions based on aggregate (macroscopic) relationships
  - 1) http://www.dot.ca.gov
  - 2) Gilkerson G. et al. 2005. Traffic Simulation

# Some mesoscopic models

13

- CONTRAM (Leonard, D.R. et al. 1989)
- Cellular Automata (Nagel K. and Schreckenberg M., 1992)
- DYNASMART (Jayakrishnan, R. et al. 1994)
- DYNAMIT (Ben-Akiva, M. 1996)
- FASTLANE (Gawron, C. 1998)
- DTASQ (Mahut, M. 2001)
- MEZZO (Burghout, W. 2004)
- AMS (Y. C. Chiu, L. Zhou, and H. Song, 2010)

#### Common disadvantages:

- Realised in proprietary software
- Defined only theoretically

# Fundamentals of discrete rate approach

14





# General comparison of approaches









# Concepts of discrete rate approach

Formally mesoscopic models can be represented as funnel



 $\lambda^{m}(t)$  – arrival rate (cust/h)  $\mu(t)$  – process rate (cust/h)  $\lambda^{out}(t)$  – interarrival rate(cust/h)  $B^{cap}$  – funnel volume  $\mu \leq \mu_{\text{funnel}}$  $B(t) \leq B^{cap}$  and  $\lambda^{out}(t) \leq \mu(t)$ The idea of calculation current value of output flow can be presented :  $0, \text{ if } \lambda^{in} = 0 \text{ and } B = 0$  $\lambda^{out} = \begin{cases} \lambda^{in}, \text{ if } \lambda^{in} > 0 \text{ and } \lambda^{in} \le \mu \text{ and } B = 0\\ \mu, \text{ if } B > 0 \end{cases}$  $B(t_{i-1} + \Delta t_i) = B(t_{i-1}) + \left(\lambda^{in} - \lambda^{out}\right) \cdot \Delta t_i$  $\mu(t)$  - controlled parameter, can be set in any time point  $t_i = t_{i-1} + \Delta t_i$ 

M. Schenk, Y. Tolujew, and T. Reggelin, "A Mesoscopic Approach to the Simulation of Logistics Systems," Advanced Manufactoring and Suistainable Logistics Lecture Notes in Business Information Processing, vol. 46, no. 1, pp. 15-25, 2010.

# Formulation of DRTRM (discrete rate traffic reference model)

22

#### MODEL FOR UNCONGESTED NETWORK

MODEL FOR CONGESTED NETWORK





# Mathematical Representation (1/4)

(25) ---

- $\lambda_i$  input intensity of the flow from direction i=1..5 (used units: PCU per time unit);
- $\beta_i$  output flow value from direction i=1..5 (used units: PCU per time unit);
- λ<sup>l</sup><sub>i</sub>, λ<sup>s</sup><sub>i</sub>, λ<sup>r</sup><sub>i</sub> intensity of the flow for the turns (*l-left; s-straight; r-right*) from direction *i=1..5* (used units: PCU per time unit);
- b<sup>l</sup><sub>i</sub>, b<sup>s</sup><sub>i</sub>, b<sup>r</sup><sub>i</sub> queue length for the turns (*l-left; s-straight; r-right*) from direction *i*=1..5 (used units: PCU);
- $\mu_i^l$ ,  $\mu_i^s$ ,  $\mu_i^r$ -the processing rate for the turns (*l-left; s-straight; r-right*) from direction i=1..5 (used units: PCU per time unit);
- $\beta_i^l$ ,  $\beta_i^s$ ,  $\beta_i^r$  output flow rate for the turns (*l-left; s-straight; r-right*) from direction i=1..5 (used units: PCU per time unit);
- $\beta_i$  total output flow to direction *i*=1..5 (used units: PCU per time unit);
- $B_5^{cap}$  the maximum value of queue length for direction 4 (used units: PCU);

# Mathematical representation (2/4)

26

The following equations could be written:

$$\begin{aligned} \lambda_i^r(t) &= \lambda_i(t) p_i^r \\ \lambda_i^s(t) &= \lambda_i(t) p_i^s \\ \lambda_i^l(t) &= \lambda_i(t) p_i^l \\ p_i^r &+ p_i^s &+ p_i^l = 1 \end{aligned}$$
(5.1)

where:

- $p_i^r$ ,  $p_i^s$ ,  $p_i^l$  a probability of turns (*l-left; s-straight; r-right*) from direction *i*=1..5;
- t current time.

$$\begin{cases} \beta_{1}(t) = \beta_{1}^{s}(t) + \beta_{4}^{r}(t) + \beta_{3}^{l}(t) \\ \beta_{2}(t) = \beta_{2}^{s}(t) + \beta_{3}^{r}(t) + \beta_{4}^{l}(t) \\ \beta_{3}(t) = \beta_{3}^{s}(t) + \beta_{1}^{r}(t) + \beta_{2}^{l}(t) \\ \beta_{4}(t) = \beta_{4}^{s}(t) + \beta_{1}^{r}(t) + \beta_{2}^{l}(t) \\ \beta_{5}(t) = \beta_{5}^{s}(t) + \beta_{5}^{r}(t) + \beta_{5}^{l}(t) \end{cases}$$
(5.2)

## Mathematical representation (3/4)

27

$$\begin{aligned}
(\mu_i^r(t) &= f_i^r(\Delta t(t)) \\
(\mu_i^s(t) &= f_i^s(\Delta t(t))
\end{aligned}$$
(5.3)

where

 $\Delta t(t)$  – time step in time t (in this demonstration equal to duration of green phase (for simplification  $t_{green}$ ) is equal for all directions and all crossroads;

 $f_i^n()$  – function (called passing function), which determines throughput capacity from direction i=1..5 and turn  $n \in (l, s, r)$ .

$$\beta_{i\in(1,2,4,5)}^{s}(t) = \begin{cases} 0, \ \lambda_{i}^{s}(t) = 0 \ and \ b_{i}^{s}(t) = 0 \\ \lambda_{i}^{s}(t), \lambda_{i}^{s}(t) > 0 \ and \ \lambda_{i}^{s}(t) \le \mu_{i}^{s} \ and \ b_{i}^{s}(t) = 0 \\ \mu_{i}^{s}, b_{i}^{s}(t) > 0 \end{cases}$$
(5.4)

$$\beta_{i\in(2,3,4,5)}^{r}(t) = \begin{cases} 0, \ \lambda_{i}^{r}(t) = 0 \ and \ b_{i}^{r}(t) = 0 \\ \lambda_{i}^{r}(t), \lambda_{i}^{r}(t) > 0 \ and \ \lambda_{i}^{r}(t) \le \mu_{i}^{r} \ and \ b_{i}^{r}(t) = 0 \\ \mu_{i}^{r}, b_{i}^{r}(t) > 0 \end{cases}$$
(5.5)

# $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \mu_{1}^{l} = f_{1}^{l} \left( t_{green} - f_{2}^{s-1}(\beta_{2}^{s}(t)) \right) + h \\ \mu_{2}^{l} = f_{2}^{l} \left( t_{green} - f_{1}^{s-1}(\beta_{1}^{s}(t)) \right) + h \\ \mu_{3}^{l} = f_{3}^{l} \left( t_{green} - f_{4}^{s-1}(\beta_{4}^{s}(t)) \right) + h \\ \mu_{5}^{l} = f_{5}^{l} (t_{green}) + h \end{array}$ (5.6)

$$\beta_{i\in(1,3,5)}^{l}(t) = \begin{cases} 0, \ \lambda_{i}^{l}(t) = 0 \ and \ b_{i}^{l}(t) = 0 \\ \lambda_{i}^{l}(t), \ \lambda_{i}^{l}(t) > 0 \ and \ \lambda_{i}^{l}(t) \le \mu_{i}^{l} \ and \ b_{i}^{l}(t) = 0 \\ \mu_{i}^{l}, b_{i}^{l}(t) > 0 \end{cases}$$
(5.7)

# Model for congested network





# Case-study: simulation of the two connected crossroads

31

# Simulation object



| 1st Crossroad (left)                                                  |          |     |      |                         | Cycle time |  | Incoming  | Distribution      | Flow intensity     | Crossroad       |
|-----------------------------------------------------------------------|----------|-----|------|-------------------------|------------|--|-----------|-------------------|--------------------|-----------------|
|                                                                       | 25 s     | 5 s | 25 s | 5 s                     | 60 s       |  | flow      | law               | mean value (m/min) | passing         |
| 2nd Crossroad (right)                                                 |          | _   |      |                         | Cycle time |  | r         | Uniform           | 20                 | 0.6             |
| 1st variant                                                           | 30 s     | 5 S | 30 s | 5 S                     | /0 s       |  | s         | Uniform           | 65                 | 0.8             |
| 2nd Crossroad (right)                                                 | 40 -     | F . | 40 - |                         | Cycle time |  | <u> </u>  | Uniform           | 10                 | 0,0             |
| 2st variant                                                           | 40 s     | 5 S | 40 s | 5 S                     | 90 s       |  |           |                   | 10                 | 0,0             |
| Source 1<br>Queue 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |          |     |      |                         |            |  |           |                   |                    |                 |
| Queue 3<br>Source 3                                                   | r3 s1 µ4 | 2   |      | r2<br>ueue 2<br>ource 2 | 4)         |  | (7)<br>Qu | l6<br>Jeue 7 r7 s | 6 Source           | 8<br>e 6<br>e 6 |



# Microscopic model

# • PTV VISION VISSIM

- Number of links and connectors 66
- Number of vehicle inputs 18
- Number of routes 24
- Number of conflict areas 8
- Number of traffic lights 24
- Data collection points 24



# Validation of mesoscopic model

35

#### Main hypothesis:

no significant difference between output from microscopic and mesoscopic models

## Qualitative

- o Animation
- o Queue dynamics comparison
- Box-Whisker plots

## <u>Quantitative</u>

- Test for homogeneity
  - Student t-test
  - × Mann-Whitney u-test
- Confidence interval test
- Naive test
- o Novel test



#### Validation results (queue dynamics comparison) queue 1 queue 4 max. length (m) max. length (m) Micromodel Micromodel Mesomodel Mesomodel time (s) time (s) queue 6 queue 7 max. length (m) max. length (m) Micromodel Micromodel Mesomode Mesomodel time (s) time (s)







# Validation results



| Data set | Qualitative<br>validation<br>(animation) | Test for<br>homogeneity | Confidence<br>interval test | Naive test | Novel test |
|----------|------------------------------------------|-------------------------|-----------------------------|------------|------------|
| Queue 1  | Valid                                    | Valid                   | Valid                       | Valid      | Valid      |
| Queue 2  | Valid                                    | Valid                   | Valid                       | Valid      | Not valid  |
| Queue 3  | Valid                                    | Valid                   | Valid                       | Valid      | Valid      |
| Queue 4  | Valid                                    | Valid                   | Valid                       | Not valid  | Not valid  |
| Queue 5  | Valid                                    | Valid                   | Valid                       | Valid      | Valid      |
| Queue 6  | Valid                                    | Valid                   | Valid                       | Valid      | Not valid  |
| Queue 7  | Valid                                    | Valid                   | Valid                       | Not valid  | Not valid  |
| Queue 8  | Valid                                    | Valid                   | Valid                       | Valid      | Not valid  |

# Case-study: Urban transport corridor mesoscopic simulation

40

TASKS IN FRAME OF APPROBATION ON REAL DATA:

- 1) DETERMINE INPUT DATA FOR MESOSCOPIC MODEL
- 2) MODEL DEVELOPMENT
- 3) ESTIMATION OF LOS
- 4) COMPARE OUTPUT RESULTS WITH MICROSCOPIC SIMULATION



# Input Data: Traffic light data and volume of traffic

42





# Input Data: Passing function estimation

43

- More than 7 hours of video from two crossroads
- More than 400 observations





#### https://www.extendsim.com

# ExtendSim Discrete Rate library application

48

| Block                                | Block name  | Main role in transport model                                                                                                                              |
|--------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0 0</b><br>;p <sup>⊔</sup> ₽so₽co | Convey Flow | Could be used to simulate a movement between two geographical point (at example between two crossroads)                                                   |
|                                      | Diverge     | Could be used to simulate a splitting of the transport flow by different direction (at example on crossroads turning left, turning right, moving forward) |
|                                      | Merge       | Could be used to merge traffic flows together                                                                                                             |
| 0<br>30 <sup>LI</sup> <b>Ş</b> sr    | Sensor      | Could be used for as the main source of information for controlling flows and to control flow interaction                                                 |
| o <mark>⊘</mark> o<br>c□ ₽∞          | Tank        | Could be used as a source and sink. Also could be used to represent capacity of the road                                                                  |
| R₽<br>₽₽                             | Valve       | Controls, monitors, and transfers traffic flow.                                                                                                           |

# Model constructed in ExtendSim



# Output results

50

| Creasered | Micr | oscopic model             | Mesoscopic<br>model |                           |  |
|-----------|------|---------------------------|---------------------|---------------------------|--|
| Number    | LOS  | Average<br>delay time (s) | LOS                 | Average<br>delay time (s) |  |
| 1         | В    | 14.5                      | В                   | 18.6                      |  |
| 2         | В    | 13.8                      | В                   | 17.5                      |  |
| 3         | A    | 1.6                       | A                   | 1.2                       |  |
| 4         | В    | 17.3                      | В                   | 17.6                      |  |
| 5*        | В    | 18.1                      | C                   | 21.6                      |  |
| 6         | В    | 11.2                      | В                   | 14.3                      |  |
| 7         | C    | 20.6                      | С                   | 30.8                      |  |
| 8*        | C    | 31.2                      | D                   | 45.5                      |  |
| 9         | A    | 2.1                       | A                   | 1.2                       |  |
| 10*       | D    | 41.5                      | E                   | 55.6                      |  |

# Mesoscopic vs Microscopic (time resource)

| Development and<br>experimentation issue                  | Microscopic model | Mesoscopic model |  |
|-----------------------------------------------------------|-------------------|------------------|--|
| Transport network implementation<br>(min)                 | 175               | 60               |  |
| Implementation of traffic lights<br>(min)                 | 60                | 30               |  |
| Conflict areas and priority rules<br>implementation (min) | 115               | 60               |  |
| Movement routes implementation                            | 30                | 30               |  |
| Traffic flow implementation (min)                         | 30                | 60               |  |
| Time spend on experimentation (min)                       | 350               | 10               |  |
| Totalimplementationandexperimentation time (min)          | 760               | 250              |  |

# Publications (1/2)

- Savrasovs M. "Traffic Flow Simulation on Discrete Rate Approach Base", Transport and Telecommunication, Vol. 13, April, 2012, pp. 167-173.
- Savrasovs M. "Urban Transport Corridor Mesoscopic Simulation", the 25th European Conference on Modelling and Simulation (ECMS'2011), 2011, pp. 587-593.
- Savrasovs M. "The Application of a Discrete Rate Approach to Traffic Flow Simulation", the 10th International Conference, Reliability and Statistics in Transportation and Communication, 2010, pp. 433-439.
- M. Savrasov, I. Yatskiv, A. Medvedev and E. Yurshevich. "Simulation as a Tool of Decision Support Process: Latvia-based Case Study". In Proceedings of 1-st International Conference on Road and Rail Infrastructure (CETRA 2010). 2010. pp. 217-222.
- Savrasovs M. "Mesoscopic Simulation Concept for Transport Corridor", the 12th World Conference on Transport Research (WCTR 2010). Lisbon, Portugal, 2010.

# Publications (2/2)

- Yatskiv, I., Savrasovs, M. "Development of Riga-Minsk Transport Corridor Simulation Model". Transport and Telecommunication, 2010, Volume 11, No 1, pp. 38-47.
- Savrasovs, M. "Overview of Traffic Mesoscopic Models", the 2nd International Magdeburg Logistics PhD Students' Workshop, 2009, pp. 71-79.
- Savrasovs M. "Flow Systems Analysis: Methods and Approaches" Computer Modelling and New Technologies, 2008, Volume 12, No 4, pp. 7-15.
- Savrasovs, M., Toluyew, Y. "Transport System's Mesoscopic Model Validation Using Simulation on Microlevel", the 8th International Conference, Reliability and Statistics in Transportation and Communication, 2008, pp. 297-304.
- Savrasovs, M. "Overview Of Flow Systems Investigation And Analysis Methods", the 8th International Conference, Reliability and Statistics in Transportation and Communication, 2008 pp. 273-280.
- Toluyew, Y., Savrasov, M. "Mesoscopic Approach to Modelling a Traffic System", International Conference, Modelling of Business, Industrial and Transport Systems, 2008, pp. 147-151.
- Savrasov, M., Toluyew, Y. "Application of Mesoscopic Modelling for Queuing Systems Research", the 7th International Conference, Reliability and Statistics in Transportation and Communication, 2007, pp. 94-99.